T cells specific for α-myosin drive immunotherapy-related myocarditis

معا للقضاء على التشيع

  • Wang, D. Y. et al. Fatal toxic effects associated with immune checkpoint inhibitors: a systematic review and meta-analysis. JAMA Oncol. 4, 1721–1728 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wei, S. C. et al. A genetic mouse model recapitulates immune checkpoint inhibitor-associated myocarditis and supports a mechanism-based therapeutic intervention. Cancer Discov. 11, 614–639 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lv, H. et al. Impaired thymic tolerance to α-myosin directs autoimmunity to the heart in mice and humans. J. Clin. Invest. 121, 1561–1573 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gabrielsen, I. S. M. et al. Transcriptomes of antigen presenting cells in human thymus. PLoS ONE 14, e0218858 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Johnson, D. B. et al. Fulminant myocarditis with combination immune checkpoint blockade. N. Engl. J. Med. 375, 1749–1755 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hu, J.-R. R. et al. Cardiovascular toxicities associated with immune checkpoint inhibitors. Cardiovasc. Res. 115, 854–868 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Salem, J. E. et al. Spectrum of cardiovascular toxicities of immune checkpoint inhibitors: a pharmacovigilance study. Lancet Oncol. 19, 1579–1589 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Moslehi, J., Lichtman, A. H., Sharpe, A. H., Galluzzi, L. & Kitsis, R. N. Immune checkpoint inhibitor–associated myocarditis: manifestations and mechanisms. J. Clin. Invest. https://doi.org/10.1172/JCI145186 (2021).

  • Zamami, Y. et al. Factors associated with immune checkpoint inhibitor-related myocarditis. JAMA Oncol. 5, 1635–1637 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Salem, J.-E. et al. Abatacept for severe immune checkpoint inhibitor-associated myocarditis. N. Engl. J. Med. 380, 2377–2379 (2019).

    PubMed 

    Google Scholar 

  • Yang, X., Bam, M., Becker, W., Nagarkatti, P. S. & Nagarkatti, M. Long noncoding RNA AW112010 promotes the differentiation of inflammatory T cells by suppressing IL-10 expression through histone demethylation. J. Immunol. 205, 987–993 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Jackson, R. et al. The translation of non-canonical open reading frames controls mucosal immunity. Nature. 564, 434–438 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Adamo, L. et al. Myocardial B cells are a subset of circulating lymphocytes with delayed transit through the heart. JCI Insight https://doi.org/10.1172/jci.insight.134700 (2020).

  • Bönner, F., Borg, N., Burghoff, S. & Schrader, J. Resident cardiac immune cells and expression of the ectonucleotidase enzymes CD39 and CD73 after ischemic injury. PLoS ONE https://doi.org/10.1371/journal.pone.0034730 (2012).

  • Martini, E. et al. Single-cell sequencing of mouse heart immune infiltrate in pressure overload-driven heart failure reveals extent of immune activation. Circulation. 140, 2089–2107 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Li, O., Zheng, P. & Liu, Y. CD24 expression on T cells is required for optimal T cell proliferation in lymphopenic host. J. Exp. Med. 200, 1083–1089 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hubbe, M. & Altevogt, P. Heat-stable antigen/CD24 on mouse T lymphocytes: evidence for a costimulatory function. Eur. J. Immunol. 24, 731–737 (1994).

    CAS 
    PubMed 

    Google Scholar 

  • Szabo P. A., Miron M. & Farber D. L. Location, location, location: tissue resident memory T cells in mice and humans. Sci. Immunol. https://doi.org/10.1126/sciimmunol.aas9673 (2019).

  • Fonseca, R. et al. Runx3 drives a CD8+ T cell tissue residency program that is absent in CD4+ T cells. Nat. Immunol. 23, 1236–1245 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Zhang, L. et al. Major adverse cardiovascular events and the timing and dose of corticosteroids in immune checkpoint inhibitor-associated myocarditis. Circulation 141, 2031–2034 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Coutinho, A. E. & Chapman, K. E. The anti-inflammatory and immunosuppressive effects of glucocorticoids, recent developments and mechanistic insights. Mol. Cell. Endocrinol. 335, 2–13 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Heather, J. M. et al. Stitchr: stitching coding TCR nucleotide sequences from V/J/CDR3 information. Nucleic Acids Res. 1, e68 (2022).

    Google Scholar 

  • Rosskopf, S. et al. A Jurkat 76 based triple parameter reporter system to evaluate TCR functions and adoptive T cell strategies. Oncotarget 9, 17608–17619 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Jutz, S. et al. Assessment of costimulation and coinhibition in a triple parameter T cell reporter line: simultaneous measurement of NF-κB, NFAT and AP-1. J. Immunol. Methods. 430, 10–20 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Gil-Cruz, C. et al. Microbiota-derived peptide mimics drive lethal inflammatory cardiomyopathy. Science 366, 881–886 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Massilamany, C., Gangaplara, A., Steffen, D. & Reddy, J. Identification of novel mimicry epitopes for cardiac myosin heavy chain-α that induce autoimmune myocarditis in A/J mice. Cell Immunol. 271, 438–449 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Meier, S. L., Satpathy, A. T. & Wells, D. K. Bystander T cells in cancer immunology and therapy. Nat. Cancer 3, 143–155 (2022).

    PubMed 

    Google Scholar 

  • Maurice, N. J., McElrath, M. J., Andersen-Nissen, E., Frahm, N. & Prlic, M. CXCR3 enables recruitment and site-specific bystander activation of memory CD8+ T cells. Nat. Commun. 10, 1–15 (2019).

    CAS 

    Google Scholar 

  • Simoni, Y. et al. Bystander CD8+ T cells are abundant and phenotypically distinct in human tumour infiltrates. Nature 557, 575–579 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Maurice, N. J., Taber, A. K. & Prlic, M. The ugly duckling turned to swan: a change in perception of bystander-activated memory CD8 T Cells. J. Immunol. 206, 455–462 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Scheper, W. et al. Low and variable tumor reactivity of the intratumoral TCR repertoire in human cancers. Nat. Med. 25, 89–94 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Paul, S., Sidney, J., Sette, A. & Peters, B. TepiTool: a pipeline for computational prediction of T cell epitope candidates. Curr. Protoc. Immunol. 2016, 18.19.1–18.19.24 (2016).

    Google Scholar 

  • Falk, K., Rötzschke, O., Stevanović, S., Jung, G. & Rammensee, H. G. Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature 351, 290–296 (1991).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Luoma, A. M. et al. Molecular pathways of colon inflammation induced by cancer immunotherapy. Cell 182, 655–671.e22 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Johnson, D. B. et al. Tumor-specific MHC-II expression drives a unique pattern of resistance to immunotherapy via LAG-3/FCRL6 engagement. JCI Insight 3, e120360 (2018).

    PubMed Central 

    Google Scholar 

  • Ji, C. et al. Myocarditis in cynomolgus monkeys following treatment with immune checkpoint inhibitors. Clin. Cancer Res. 25, 4735–4748 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Woo, S. R. et al. Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape. Cancer Res. 72, 917–927 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Okazaki, T. et al. PD-1 and LAG-3 inhibitory co-receptors act synergistically to prevent autoimmunity in mice. J. Exp. Med. 208, 395–407 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chowell, D. et al. Patient HLA class I genotype influences cancer response to checkpoint blockade immunotherapy. Science 359, 582–587 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Naranbhai, V. et al. HLA-A*03 and response to immune checkpoint blockade in cancer: an epidemiological biomarker study. Lancet Oncol. https://doi.org/10.1016/S1470-2045(21)00582-9 (2022).

  • Correale, P. et al. HLA expression correlates to the risk of immune checkpoint inhibitor-induced pneumonitis. Cells https://doi.org/10.3390/cells9091964 (2020).

  • Hasan Ali, O. et al. Human leukocyte antigen variation is associated with adverse events of checkpoint inhibitors. Eur. J. Cancer 107, 8–14 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • McCulloch, J. A. et al. Intestinal microbiota signatures of clinical response and immune-related adverse events in melanoma patients treated with anti-PD-1. Nat. Med. https://doi.org/10.1038/s41591-022-01698-2 (2022).

  • Andrews, M. C. et al. Gut microbiota signatures are associated with toxicity to combined CTLA-4 and PD-1 blockade. Nat. Med. https://doi.org/10.1038/s41591-021-01406-6 (2021).

  • Van der Borght, K. et al. Myocarditis elicits dendritic cell and monocyte infiltration in the heart and self-antigen presentation by conventional type 2 dendritic cells. Front. Immunol. 9, 2714 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Rieckmann, M. et al. Myocardial infarction triggers cardioprotective antigen-specific T helper cell responses. J. Clin. Invest. https://doi.org/10.1172/jci123859 (2019).

  • Lee, J. H. et al. Myosin-primed tolerogenic dendritic cells ameliorate experimental autoimmune myocarditis. Cardiovasc. Res. 101, 203–210 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Tajiri, K. et al. A new mouse model of chronic myocarditis induced by recombinant Bacille Calmette–Guèrin expressing a T-cell epitope of cardiac myosin heavy chain-α. Int. J. Mol. Sci. 22, 794 (2021).

    CAS 
    PubMed Central 

    Google Scholar 

  • Hua, X. et al. Single-cell RNA sequencing to dissect the immunological network of autoimmune myocarditis. Circulation https://doi.org/10.1161/circulationaha.119.043545 (2020).

  • Taylor, J. A. et al. A spontaneous model for autoimmune myocarditis using the human MHC molecule HLA-DQ8. J. Immunol. 172, 2651–2658 (2004).

  • Mombaerts, P. et al. RAG-1-deficient mice have no mature B and T lymphocytes. Cell 68, 869–877 (1992).

    CAS 
    PubMed 

    Google Scholar 

  • Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of single-cell gene expression data. Nat. Biotechnol. 33, 495–502 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411–420 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stuart, T. et al. Comprehensive integration of single-cell data. Cell. 177, 1888–1902.e21 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu, Y. et al. FOXP3 controls regulatory T cell function through cooperation with NFAT. Cell. 126, 375–387 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Gao, J. et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal. https://doi.org/10.1126/scisignal.2004088 (2013).

  • Cerami, E. et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2, 401–404 (2012).

    PubMed 

    Google Scholar 

  • Oh, H. M. et al. An efficient method for the rapid establishment of Epstein-Barr virus immortalization of human B lymphocytes. Cell Prolif. 36, 191–197 (2003).

    MathSciNet 
    PubMed 

    Google Scholar 

  • Granato, M. et al. Epstein–Barr virus blocks the autophagic flux and appropriates the autophagic machinery to enhance viral replication. J. Virol. 88, 12715 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wölfl, M. & Greenberg, P. D. Antigen-specific activation and cytokine-facilitated expansion of naive, human CD8+ T cells. Nat. Protoc. 9, 950–966 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Eberhardt, C. S. et al. Functional HPV-specific PD-1+ stem-like CD8 T cells in head and neck cancer. Nature 597, 279–284 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5-7 (2020).

  • Nazarov, V., immunarch.bot, Rumynskiy, E. immunomind/immunarch: 0.6.5: Basic single-cell support. Zenodo https://doi.org/10.5281/zenodo.3893991 (2020).

  • معا للقضاء على التشيع

    اترك تعليقاً

    لن يتم نشر عنوان بريدك الإلكتروني.

    زر الذهاب إلى الأعلى
    إغلاق